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1. Introduction

In their 2010 revision of the paper Polynomial Functors and Polynomial Monads,
Gambino and Kock write:

Notions of polynomial functor have proved useful in many areas of mathe-
matics, ranging from algebra [41, 43] and topology [10, 50] to mathematical
logic [17, 45] and theoretical computer science [24, 2, 20].

One of the primary differences between this document and theirs is that they have
a bibliography. The other is that this document is an attempt at a motivating preamble
for the early definitions and theorems of their one. This information might allow the
reader to infer the content of the following two sections.

1.1. What this document is

1.2. What this document is not

1.3. Prerequisites

In this document we will take for granted the internal language supported by a locally
cartesian-closed category – a category equipped with a choice of pullback functor f ∗

for each arrow f , such that f ∗ has a right adjoint Πf , in addition to its automatic
left adjoint Σf . Depending on the internet-time point of origin of this document, a
supporting introduction to locally cartesian-closed categories may be related to my
website math.jhu.edu/˜tclingm1 by at least one of the following

{will appear on, is available on}.

The existence or availability of that other document notwithstanding, we will briefly
remind the reader of the important aspects of our notation.
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Objects
C

X x of a slice category C/C are to be regarded as indexed collections of

objects (Xc | c ∈ C). Of course this isn’t literally true, but we have the following seri-
ally commutative diagram for sets as motivation, where the vertical isomorphisms are
natural in the indicated manner.

Set/A Set/B

[Aop,Set] [Bop,Set]

f ∗

Σf

Πf

[f ,Set]

Lanf

Ranf

� �

In fact, understanding the internal language amounts to understanding this dia-
gram – and especially the nature of the vertical natural isomorphisms. The reader for
whom this is new is recommended to fully explore the diagram before proceeding.

Extending the above situation to an arbitrary locally cartesian-closed category C

with morphism f : A→ B and objects (Xa | a ∈ A) of C/A and (Yb | b ∈ B) of C/B we
derive the following definitions, writing Σ for coproduct:

Σf (Xa | a ∈ A) :≡

 Σ
(a∈Ab )

Xa | b ∈ B


f ∗(Yb | b ∈ B) :≡

(
Yf a | a ∈ A

)
Πf (Xa | a ∈ A) :≡

 Π
(a∈Ab )

Xa | b ∈ B


The reader is encouraged to make the connection between this and the “quantifiers

as adjoints” prescription of locally cartesian-closed categories1. Extending this, we
consider Σ(a ∈ Ab),Xa to comprise pairs (a,x) where the type/fibre of x, that is, Xa
depends on the first component a. Likewise we view Π(a ∈ Ab),Xa as the collection of
functions {f : A→∪Xa | ∀a ∈ Ab, [f a ∈ Xa]} – dependent functions. Of specific import
to us will be the counit of the adjunction (−)∗ ⊣Π(−) which bears the interpretation of
function evaluation.

The reader is encouraged to find a way to ensure that all of this means something
before proceeding.
1See, for instance, §9.5 of “Category Theory” by S. Awodey for a lucid account.
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2. The climb

2.1. On generalisation and new behaviour

A classical polynomial is something of the form Σ(n ∈N ), anx
n where N ⊆ N, and

where perhaps we require some finiteness condition on the set {n ∈ N | an , 0} or
N . As x and an are really ‘valued’ in the same sort of things, say natural numbers, we
see that regarded simply as a formal sum the data of such a polynomial is no more
than that of the sequence of coefficients (an)N .

There is a very limited theory to be enjoyed should we constrain the study of poly-
nomials to those concepts naturally captured by their sequences of coefficients – that
is, as opposed to polynomial functions. In order to clearly delineate the theory of poly-
nomial functions from that of sequences of coefficients, in the coming sections we will
be careful to distinguish a polynomial – a sequence of coefficients or a generalisation
thereof – from the extension of the polynomial to a function – or a generalisation thereof.
Classically these terms are either intentionally confused or the former notion is not
dealt with. That is, we not wish to make a category error in our work, and moreover
the two theories – that corresponding to polynomials and that corresponding to the
extension of polynomials to functions – are independently interesting.

With that said, the idea that polynomials may be extended to functions leads to
all sorts of new behaviour when compared to the idea that polynomials are merely se-
quences of numbers. For example, when extended to functions, we now have the tools
of composition and roots, ideas which we understand to be at the heart of classical al-
gebraic geometry and complex analysis. We wish to say: when extended to functions,
polynomials have interesting behaviour.

Our goal then, broadly stated, is to liberate ourselves of the constraint that polyno-
mials functions are merely functions, and determine whether new behaviour reveals
itself should we consider them somehow as functors.

2.2. Categorical polynomials

A traditional first step in generalisation is to rephrase our current understanding in
some equivalent, though seemingly less familiar way. We have no intention of break-
ing with this custom here.

In the case of polynomials whose coefficients are valued in the natural numbers,
polynomials in N, we may leverage the fact that

anx
n = xn + . . .+ xn︸       ︷︷       ︸

an times

to recapture the data of a polynomial Σ(n ∈N ), anx
n in the slightly unfamiliar form of

Σ(n ∈N ),xbn . For example, 2x3 may be encoded as b0 = b1 = 3 and bn = 0 for n > 1. It
is this form that we will find most amenable to immediate generalisation. A sample
thought process of categorification is provided in the table below:

3



thing boring new

x number object

(bn)N sequence object
N

B f of slice

xbn = x · · ·x︸︷︷︸
bn

product ... product?

The idea here is that we can reshape the data of a polynomial into that captured
by an object of a slice category, an indexed object. Should we do so, we may define the
extension of our newly formed polynomial f : B→N to a functor Extf as the composite
functor

C/1
(!B)∗
−−−→C/B

Πf
−−−→C/N

Σ!N−−−→C/1

In the internal language, this functor acts on (X) of C/1 to produce the object Σ
(n∈N )

Π
(b∈Bn )

X

 .
In Set, when viewed through the lens bn = |Bn|, this really is the analogue of a poly-
nomial function acting on sets. Encouraged by this we fix terminology in our first
definition.
Def. 2.1. A polynomial in a category C is an arrow f : B → N . The extension of a
polynomial f to a functor, Extf : C/1→C/1, is defined to be composite Σ!NΠf (!B)∗.

Here again we carefully distinguish a polynomial from its extension to a functor,
and we will see that in our generalisation both categories of objects may be of inde-
pendent interest. In the later sections we will relate them, but for now we keep our
distinction clear.

Remark 2.2. The categorically minded reader may find themself wondering whether
Ext is the ‘on objects’ portion of a functor extending polynomials and their morphisms
to functors and natural transformations. The answer is both satisfying and deep. But
although it may have delighted the reader to see preliminary notions in this direction
here, it would be unwise to present it at such a time as we have not yet reached our
most general definition of polynomial. ◁

Remark 2.3. Although of no immediate interest, in fact we already have new behaviour.
Extf is a functor and so now our polynomials understand how to operate on ‘arrows
between numbers’. ◁
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2.3. Composition

A generalisation is only worthy of the name if it captures some of the richness of
the original notion. In our case this richness stems from the notion that composites
of polynomials are polynomials. Said more carefully, the classical theorem might be
phrased as follows.

Thm. 2.4. Given coefficient sequences (an)N and (a′n)N and their extension to polynomial
functions p(x) and p′(x), there exists a coefficient sequence (a′′n)N such that the composite
function p ◦ p′ is the extension of (a′′n)N .

Our task, therefore, is to prove the analogous theorem for categorical polynomials
and their extensions to functors. We will prove this fact to the satisfaction of the reader
critical of internal languages, and in greater generality, later. For now we content
ourselves with the far more manageable task of working internally.

To that end, let g : A→ M and f : B→ N be polynomials in C. We will examine
the action of the composite functor Extg ◦Extf on an object (X) of C/1 and attempt to
recast the result in the form (Σ(?),Π(??),X) so that for some choice of arrow ??? : ?→ ??,
Extg ◦Extf � Ext???.

To begin we perform the straightforward expansion

Extg Extf (X) ≡ Σ
(m∈M )

Π
(a∈Am )

Σ
(n∈N )

Π
(b∈Bn )

X = Σ
(m∈M )

 Σ
(n∈N )

XBn

Am

.

Beyond the fact that this expression begins with a Σ, there is nothing else about it
which matches our desired form. Our goal is thus to rewrite this so that we may
deduce ?, ??, and ???. We do this in several phases.

2.3.1. Distributivity

For the moment let us consider the expression
(
Σ(n ∈N ),XBn

)Am as though we were
working in a ring and introduce some finiteness constraints. That is, suppose that
Am and Bn were natural numbers, that N = {0, . . . , k}, and that X was a ring element.
That is to say, imagine that we were tasked with rewriting (xb0 + . . .+xbk )am as a sum of
products instead of as a product of sums.

We may be tempted to appeal to the peculiarities of combinatorics in our ring in
attempting to write down a reduced form of the expression, but there is of course a
general answer which does not depend on the nature of the underlying ring.

Should be begin to multiply out,

(xb0 + . . .+ xbk )am = xb0 · · ·xb0︸    ︷︷    ︸
am

+xb1 · xb0 · · ·xb0︸          ︷︷          ︸
am

+ . . .+ xbk · · ·xbk︸    ︷︷    ︸
am

we see that the answer is precisely a sum over all possible am-length lists in {b0, . . . , bk}
of am-length products of x’s to the power of elements of the list. This clumsy natural
language description is really the claim that (xb0 + . . .+ xbk )am = Σ(l ∈N am),xbl1 · · ·xblk –
a basic fact about the distributivity of multiplication over addition.
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This claim remains formally true in our category when translated back into the
appropriate language – a fact we shall prove as lemma 3.3. That is, we assert that we
have the equality

 Σ
(m∈M )

Π
(a∈Am )

Σ
(n∈N )

Π
(b∈Bn )

X

 =

 Σ(m∈M )
Σ

( l∈Π(a∈Am),N )
Π

(a∈Am )
Π

(b∈Bl(a) )
X

 . (2.3.1)

This property we will be able to recast as a consequence of a distributivity lemma
about LCCs, or as we shall see later, the Axiom Theorem of Choice2. Either way, this
is almost what we wanted, but we appear to have contracted a case of double-vision.

2.3.2. Associativity

The last tool we need is a generalisation of associativity for products. We do this
through the means of the following obvious lemma and its corollaries.

Lem. 2.5 (Associativity). Given a category C define Σ(C) :≡ C/C on objects, and on mor-
phisms c : C→ C′ let Σc : C/C→C/C′ be post-composition. Then Σ is a functor. ■

Cor. 2.6. Given f : A→ B and g : B→ C of C we have in particular that gf = Σgf and so
by the above lemma the following diagram commutes.

C/A C/B C/CΣf Σg

Σgf

ΣΣgf

Thus for (Xa | a ∈ A) we have(
Σ

(b∈Bc )
Σ

(a∈Ab )

Xa

∣∣∣∣ c ∈ C) =

 Σ
( (b,a)∈Σ(b∈Bc),Ab )

Xa

∣∣∣∣ c ∈ C
■

In then non-dependent case where X = X ′ ×A, A = A′ × B, B = B′ ×C, and all the
maps are projections, Σ(b ∈ Bc),Ab reduces to B′ ×A′ and so on so that our corollary is
the statement B′ × (A′ ×X ′) = (B′ ×A′)×X ′.

We are now in the position to further reduce our work. By the above result we have
the equality

Σ
(m∈M )

Σ
( l∈Π(a∈Am),N )

Π
(a∈Am )

Π
(b∈Bl(a) )

X = Σ
( (m,l)∈Σ(m∈M),Π(a∈Am),N )

Π
(a∈Am )

Π
(b∈Bl(a) )

X.

Of course there is a similar lemma for the functoriality of Π(−) and a similar associa-
tivity corollary for it, but beware: ΠgΠf = Πgf = ΠΣgf . Using this we obtain our final
reduction:

Extg Extf (X) = Σ
( (m,l)∈Σ(m∈M),Π(a∈Am),N )

Π
( (a,b)∈Σ(a∈Am),Bl(a) )

X

2Of course there is a trick here, but we hope that this statement will be sufficiently jarring or tanta-
lising so as to interest the reader in the coming matter.
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2.3.3. A triumph of notation

At this point it is hoped that the reader will have found all our manipulations to be
intuitive, if not justifiably correct. Assuming as much we may declare our project to
be a success:

Given two polynomials g : A→M and f : B→N , the composite of their extensions
to functors Extg ◦Extf is indeed the extension of a third polynomial to a functor. We
have proven this fact by construction, the composite of the two polynomials is easily
read off to be the family  Σ

(a∈Am )

Bl(a)

∣∣∣∣ (m,l) ∈ Σ
(m∈M )

Π
(a∈Am )

N


and the previous sections demonstrate that its extension to a functor is exactly as we
desire. Of course, to the reader sceptical of the truth of our manipulations or the value
of the use of the internal language of our LCCC, such a statement could be viewed as
anywhere from un-enlightening to useless. It is to that reader to which we dedicate
the next section.

2.4. Externalisation

In this section our goal is to describe the arrow θ : β → α of C corresponding to the
map we constructed internally, above. It is a fairly straightforward task to externalise
the object α :≡ Σ(m ∈M),Π(a ∈ Am),N – in fact its very name is essentially its recipe:
view N as dependent on a ∈ A and then take Πg of this dependence. More concretely,
we may define α to be the projection of the object Πg(!A)∗(!N ) of C/M – the ‘total space’.
That is, we set α :≡ Σ!MΠg(!A)∗(!N ) under the isomorphism C/1 �C.

On the other hand β is somewhat more complicated for the appearance of l(a) in
the indexing of B. We know that function evaluation is given by the counit of the
adjunction (−)∗ ⊣Π(−) and that substitution is given by pullback.

The precise nature of this construction may be understood by contemplating the
below diagram, whence we ultimately define θ :≡ Σ(Πgπ1)

∗g(ε∗π2
∗f ) to be the top hor-

izontal composite, from which we may read off β and α as its domain and codomain
respectively.
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B N 1

π2
∗B (!A)∗N A M

ε∗π2
∗B g∗Πg(!A)∗N α :≡Πg(!A)∗N

1 1

f !N

π2 !A

π2
∗f π1 g

ε Πgπ1

ε∗π2
∗f (Πgπ1)

∗g

(Bn | n ∈N )

(Bn | (a,n) ∈ A×N )

(Bl(a) | ((m,l), a) ∈ Σ((m,l) ∈ α),Am) (Am | (m,l) ∈ α) Σ(m ∈M),Π(a ∈ Am),N

(N | a ∈ A)

(Am |m ∈M)

(Π(a ∈ Am),N |m ∈M)

Once this diagram has been understood by the reader3, we wish to draw attention
to the top and bottom zig-zag boundaries beginning at the left 1 and ending at the
right 1 – and in so doing address the arguably irrelevant appearance of the terminal
at both extremes.

The bottom zig-zag, 1← B→ N → 1← A→M → 1, is awfully reminiscent of our
two polynomials and their functor extensions. In particular, lining up the maps with
∗ Π Σ ∗ Π Σ gives precisely the composite Extg ◦Extf . Similarly, for the top zig-zag,
1 ← ε∗π2

∗B → α → 1 where we have composed the middle maps4, applying ∗ Π Σ

gives us Extθ – a functor which, we have argued, is isomorphic to Extg ◦Extf . Thus
although the commutativity of this diagram does not seem to be of immediate import,
its structure does inform the way that various functors inter-mingle.

In the coming section we will distil from this situation two important components,
and in section 4 we will demonstrate how composition of the extensions of polynomi-
als (there in greater generality yet) comprises only these two components.

At this point we hope that the once-sceptical reader now feels that the validity
of our construction depends only upon our claims of distributivity – a deficiency to
which we will soon attend – and that the internal language is useful both as a guide
for our external arguments and as an independent methodology all its own.

3there’s no rush
4so that the second arrow in the zig-zag is θ
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3. The ladder

This section is dedicated entirely to establishing the validity of lemmas 3.1 and 3.3
below, results which will find repeated and useful employ in our theory to come. The
reader with only a passing interest in the details may content themself with the state-
ments of the lemmas alone, the surrounding framework is precisely that.

3.1. The logician’s Beck-Chevalley lemma

Lem. 3.1. In a locally cartesian-closed category C, given the below pullback square we have
isomorphisms of functors Σqp

∗ � g∗Σf and Πqp
∗ � g∗Πf .

D A

B C

p

q f

g

Proof. Take X
x→ A of C/A and consider that by the pullback composition lemma we

have the situation in the below-left diagram. From this we may read off that Σqp
∗x �

g∗Σf x, and the extension to morphisms and naturality is clear. With this in hand we
may deduce the natural isomorphisms of functors as indicated below-right.

• X

D A

B C

p

q

g

f

C/B(−,Πqp
∗−) �C/P (q∗−,p∗−)
(adj.) �C/A(Σpq

∗−,−)
† �C/A(f ∗Σg−,−)

(adj.) �C/B(−, g∗Πf −)

In the isomorphism marked † we have made use of the fact that, if the square of
f ,p,q,g above is a pullback then so too is the square g,q,p, f , and we then applied our
partial result to it. Yoneda concludes the proof. ■

Remark 3.2. Mates also provide an efficient means to derive the Π isomorphism from
that of the Σ, but this proof is (in the author’s opinion) more fun. ◁

Under the interpretation of adjoints as quantifiers the statement of lemma 3.1may
be understood to mean that substitution of variables commutes with quantification.
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3.2. The distributivity lemma

Lem. 3.3. (Distributivity) In a locally cartesian-closed category C, given the below diagram
we have an isomorphism of functors Πf Σu � ΣΠf uΠgεu

∗.

f ∗Πf C Πf C

B AC

g

f ∗Πf u Πf u

fu

εu

In order to prove this result easily we will need some supporting theory, introduced
in the coming section.

3.2.1. Cartesian functors, natural transformations and adjunctions

Def. 3.4. With no assumptions on the categories,

1. A functor is termed cartesian if it preserves pullbacks.

2. A natural transformation is termed cartesian if all of its naturality squares are
pullbacks.

3. An adjunction F ⊣ G : C → D is cartesian when both the unit and counit are
cartesian natural transformations, and both functors are cartesian.

Next we need some structural lemmas about cartesian transforms.

Lem. 3.5. (Properties of cartesian natural transformations) Given functors H,K : C→ D

where C has a terminal object 1, and a natural transformation α : H ⇒ K ,

1. if α is cartesian then α is an isomorphism iff α1 : H1→ K1 is, as an arrow of D,

2. if H ′,K ′ : D→ E are functors such that either H ′ is cartesian or K ′ is cartesian, and
β : H ′⇒ K ′ is cartesian and so too is α, then β ∗α is cartesian.

■

We also establish a connection to mates.

Lem. 3.6. (Cartesian mates) Given a natural transformation α as below with F ⊣ G and
F′ ⊣ G′ cartesian adjunctions and H and K cartesian functors, α is cartesian iff its mate is.

C

C′

D

D′

F ⊣ G

F′ ⊣ G′

H Kα
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Proof. By direct computation, applying lemma 3.5 (2) and pullback lemmas. ■

Our use-case demands a specific instance of cartesian adjunctions.

Lem. 3.7. In a locally cartesian-closed category C, for f : A→ B the adjunction Σf ⊣ f ∗ is
cartesian.

Proof. It is clear that both functors are cartesian for they are left adjoints. That the
unit and counit are cartesian follows from the same pullback lemmas as before. ■

Finally, while both (−)∗ and Π(−) are right adjoints and so are continuous, all is not
lost for Σ(−).

Lem. 3.8. Given f : A→ B in C, Σf : C/A→C/B preserves connected limits.

Proof. By direct computation. ■

3.2.2. Proof of the distributivity lemma

Armed with the above lemmas, the proof of lemma 3.3 is now readily obtained.

Proof. (Distributivity lemma) We apply lemma 3.1 to our pullback square in lemma 3.3
noting that uεu = Πf u, to construct an isomorphism as below-left. Note that u∗ ⊣ Σu
and (Πf u)∗ ⊣ ΣΠf u are cartesian adjunctions (lemma 3.7), isomorphisms are cartesian,
and Πgεu

∗ and Πf are (composites of) right adjoints and so are cartesian. Thus we
may apply lemma 3.6 to deduce that the mate of the isomorphism, α below-right, is
cartesian so that by lemma 3.5 (1) it is an isomorphism iff αidC

is an isomorphism in
C/A. Direct computation shows that this component is the identity.

C/C

C/B

C/Πf C

C/A

Πgεu
∗

u∗ (Πf u)∗

Πf

�

C/C

C/B

C/Πf C

C/A

Πgεu
∗

Σu ΣΠf u

Πf

α ■

3.2.3. What does this mean for you?™

As before we explore the internal version of this theorem. In recalling the diagram at
hand, below, we annotate it just as we did in section 2.4. Beware that the object f ∗Πf C
is naturally a matrix, it is indexed by two variables – those coming from B and those
coming from Πf C – and so we have annotated it in two ways. We leave it as an exercise
to determine the action of g and f ∗Πf u on the respectively reversed presentations of
f ∗Πf C.
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f ∗Πf C Πf C

B AC

g

f ∗Πf u Πf u

fu

εu

(Π(b ∈ Ba),Cb | a ∈ A)

(Cb | b ∈ B) (Ba | a ∈ A)

(Π(b′ ∈ Bf b),Cb′ | b ∈ B)

(Ba | (a, l) ∈ Σ(a ∈ A),Π(b ∈ Ba),Cb)
Σ(b ∈ B),Π(b′ ∈ Bf (b)),Cb′

Σ((a, l) ∈ Σ(a ∈ A),Π(b ∈ Ba),Cb),Ba

Now let (Xc | c ∈ C) be an object of C/C. On the one hand we have

Πf Σu(Xc | c ∈ C) ≡

Π
(b∈Ba )

Σ
(c∈Cb )

Xc

∣∣∣∣ a ∈ A . (3.2.1)

On the other hand, using our annotated diagram above, we may deduce that

ΣΠf uΠgεu
∗(Xc | c ∈ C) ≡

 Σ
( l∈Π(b∈Ba),Cb )

Π
(b∈Ba )

Xl(b)

∣∣∣∣ a ∈ A . (3.2.2)

It is the author’s intention that this situation seem familiar. Indeed, the careful
reader will be able to deduce that this is a generalisation and externalisation of the
argument made in section 2.3.1 and that the equality asserted in equation (2.3.1) is a
special case of the equality between equations (3.2.1) and (3.2.2) above.

Thus we are already familiar with the ‘arithmetic’ interpretation of this statement
in the internal language: the distributive law for multiplication over addition. How-
ever, as we mentioned earlier, this may be read in another way.

Under the standard correspondence between quantifiers and adjoints, and sup-
pressing the dependence upon A and setting X = C so that Xc = 1, equation (3.2.1) may
be read as “∀b ∈ B,∃c ∈ Cb”. In this light equation (3.2.2) may be read as “∃l ∈Πb∈BCb”
– where we have collapsed the product, Π(b ∈ B),Xl(b) = Π(b ∈ B),1 = 1. The classical
Axiom of Choice says that from an inhabited family of inhabited sets5 we may derive a
choice function. We have just seen that lemma 3.3 asserts not only that the antecedent
implies the consequent, but that they are in fact equal.

Of course like any good magic this is fundamentally a trick, and we were conniving
in our efforts to relegate the enabling equivocation to a footnote – a place no reader
would ever look. Shame on us.

While it is true that classically the propositions “inhabited” and “non-empty” are
logically equivalent, they are not constructively equivalent. Herein lies the trick. At
the risk of angering the reader with opinions about the Axiom of Choice – opinions
one way or another –, a reason that a choice principle might seem appealing is that

5We prefer the term “inhabited” over the doubly negative “non-empty”. These are classically equiv-
alent.
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we intuitively view it in such a constructive manner: if a mathematician is positively
able to demonstrate an inhabitant of every set in the family, then that mathematician
is a choice function. In such cases where to prove inhabitance involves an explicit
construction we have already assembled all the data of a choice function – this is the
statement of lemma 3.3, though several times generalised. It is only when we begin
to non-constructively demonstrate that the sets are inhabited – that their being empty
would lead to a contradiction – that choice functions might seem strange.

With our magic systematically deconstructed and our guile laid bare, we leave
ourselves no choice but to press on to the theory of polynomials in general, in the
hope that we may yet reestablish the trust the reader had once so willingly placed in
us.

4. The view

In the penultimate section we saw how, contingent upon a now proven claim, given
two polynomials in a category we may find a third whose extension to a functor agrees
with the composite of the extensions of the first two. Unfortunately, our rather direct
approach to the matter did not seem to uncover any readily recognisable results which
might aid us in further generalisations.

That is to say, we are not satisfied with our definition of polynomial just yet. A
first unnecessary constraint is that of univariance – polynomials ought to be allowed
to combine multiple input variables.

As before, in order to arrive at a form more readily amenable to generalisation we
must restate the familiar in a slightly different manner. In this case we repeat our
earlier translation of Σ(n ∈N ), anx

n = Σ(n ∈N ),xbn but in the multivariate case. That
is, we begin with the familiar form of

Σ
(n1,...,nk ,∈N )

an⃗ · x1n1 · · · xknk = Σ
(n1,...,nk ,∈N )

an⃗ ·Π
( i∈I )

xi
ni ,

and rewrite it instead as

Σ
(n∈N )

Π
( i∈I )

xi
bn,i .

An instance of such a reshuffling of information might be the polynomial 2x1
2x2
1+x2

4

– in the coefficient sense. To such a collection of coefficients we might associate N :≡
{0,1,2} and the matrix b ∈ {1,2}3×2 of the form2 12 10 4

 .
This is of course not the only representation, but under our formalism this does

give rise to the same multivariate polynomial. While this works, this is not yet the
most convenient form for us.

We had previously reasoned that xk should be a repeated product of x with itself
k times and so we recast xk = Π(b ∈ B),x where |B| = k. How then are we to interpret
expressions of the form Π(i ∈ I),xi

bn,i?
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A naı̈ve attempt at the same formalism would leave i unbound in Π(b ∈ B),xi , but
all is not lost. The exponents bn,i “knew” the variable index to which they were asso-
ciated, and so under the interchange of exponent and repeated product, the elements
b ∈ B must now “know” the same thing. That is, we can recover fully the data of the
bn,i should we supply an additional function s : B→ I and pose the form Π(b ∈ B),xs(b)
instead.

Altogether, the equivalent form of polynomials we shall generalise is that of

s : B→ I, Σ
(n∈N )

Π
(b∈Bn )

xs(b) .

To tie this in to the previous form, consider that B is now indexed by N × I and behaves
as though it was a matrix, but we have lost the rigidity constraints that all rows are
the same length and that all columns have entries in all indices!

As a concluding example of this rephrasing, we may recapture the same polyno-
mial as before, 2x1

2x2
1 + x2

4, by defining

N :≡ {0,1,2} I :≡ {1,2}
B0 :≡ B1 :≡ {(0,1), (1,1), (2,2)} B2 :≡ {(0,2), (1,2), (2,2), (3,2)}

B :≡ B0 ⊔B1 ⊔B2 and s as the evident projection.

4.1. General polynomials

There is one final generalisation to which we must attend before stating the defini-
tion of a polynomial in a category at the level of detail we desire. While multivariate
polynomials are common place in mathematics, the somehow dual notion of indexed
families of polynomials is not often thought of as related. We wish to capture both of
these aspects in our framework and so move to make the following definition.
Def. 4.1. A polynomial P in a locally cartesian-closed category C is a diagram in C of
the form

I
s←− B

f
−→ A

t−→ J.

The extension of a polynomial P to a functor ExtP : C/I → C/J is defined to be the
composite Σt ◦Πf ◦ s∗. Given a functor we may sometimes be concerned only with the
property of being the extension of some polynomial, and in these cases we may term
such a functor a polynomial functor.

Let us elaborate the action of ExtP on (Xi | i ∈ I) of C/I . By unwinding defini-
tions we see that the result is (Σ(a ∈ Aj),Π(b ∈ Ba),Xs(b) | j ∈ J) – an indexed family of
multivariate polynomial functions evaluated on an indexed family of input variables.

Specialising to the case of J = 1 recovers the context of the immediately prior dis-
cussion, and specialising further to I = 1 constrains our definition to that of section 2.

Remark 4.2. As a consequence of lemma 3.8, polynomial functors preserve connected
limits and are, in particular, cartesian. ◁
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Example 4.3

Polynomials of the form I
s←M = M

t→ J are termed linear polynomials and functors
which are the extension of linear polynomials are termed linear functors or matrices.

To see that this terminology is justified, first consider that M may be thought of
as an internal matrix itself, (Mj,i | (j, i) ∈ J × I), so that Mj = Σ(i ∈ I),Mj,i . Moreover
ΠidM

= idC/M and so if L is a linear polynomial then we may recast ExtL(Xi | i ∈ I) ≡
(Σ(m ∈Mj),Xs(m) | j ∈ J) = (Σ(i ∈ I),Σ(m ∈Mj,i),Xi | j ∈ J) = (Σ(i ∈ I),Mj,i ×Xi | j ∈ J).
In the case that I = M = J and s = t = idM we recover the usual identity linear
polynomial and its extension, the identity matrix.

An excellent example of linear polynomials is provided by internal category
objects. If C = (C0,C1,∂0,∂1, id,◦) is an internal category object then let FPC be the
linear polynomial (∂0, idC1 ,∂1). By our prescription we should view C1 as the usual
matrix (C1(a,b) | (b,a) ∈ C0 ×C0). With that, if (Xa | a ∈ C0) is an object of C/C0 then
ExtFPC (Xa | a ∈ C0) = (Σ(a ∈ C0),C1(a,b)×Xa | b ∈ C0) which is nothing but the object
underlying the free internal presheaf on (Xa | a ∈ C0).

Example 4.4

Another example which bears mentioning is the polynomial FM in Set defined by

1←−N ′
f
−→ N −→ 1

in which |f ↼{n}| = n. Should we expand the action of ExtFM on (X) of C/1 we see
that it is precisely the underlying functor of the free monoid monad on Set. That
is, ExtFM(X) = (Σ(n ∈ N),Xn).

Non-example 4.5

Not every functor is polynomial, as we may see in cases where we have some ap-
propriate notion of size. In particular, on Set, covariant powerset P : Set → Set

is not the extension of a polynomial. To see this, if f : A→ B is an arrow of Set
considered as a polynomial P of the form 1← A→ B→ 1, then for suitably large
X we have |ExtP (X)| = |Σ(b ∈ B),XAb | ≤ |B×XA| < |PX |.

Now that we have suitably generalised polynomials and their extension, we turn
to the generalised version of our composition theorem of section 2.3.
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4.2. Composition of polynomials

Def. 4.6. Given two polynomials, P = {I s←− B
f
−→ A

t−→ J} and Q = {J u←− D
g
−→ C

v−→ K} in a
locally cartesian-closed category C, we define the composite polynomial to be

Q ◦ P :≡
{
I

spq
←−−− (hε)∗B

((Πgk)∗g)((hε)∗f )
−−−−−−−−−−−−−−→Πgu

∗A
vΠgk
−−−−→ K

}
where the arrows and morphisms arise from the following diagram:

g∗Πgu
∗A Πgu

∗A

D C

u∗A

A

J

B

h∗B

(hε)∗B

KI

(Πgk)∗g

Πgk

g

kh

t u
v

ε

f
s

p

q

(hε)∗f

h∗f

wherein h∗B, (hε)∗B, u∗A, and g∗Πgu
∗A are the vertices of pullbacks.

Thm. 4.7. (Composition of polynomials) Given two polynomials P and Q as above in a
locally cartesian-closed category C, ExtQ ◦ExtP � ExtP ◦Q as functors C/I →C/K .

Proof. (External) With reference to the diagram of we derive the following isomor-
phisms of functors.

ExtQ ◦ExtP :≡ ΣvΠgu
∗ΣtΠf s

∗ � ΣvΠgΣkh
∗Πf s

∗ (lemma 3.1)

� ΣvΣΠgkΠ(Πgk)∗gε
∗h∗Πf s

∗ (lemma 3.3)

� ΣvΣΠgkΠ(Πgk)∗gΠ(hε)∗f (spq)∗ (lemma 3.1)

� ΣvΠgkΠ((Πgk)∗g)((hε)∗f )(spq)∗ (functoriality)

■

It is a good exercise to unpack this external isomorphism into an internal equal-
ity, in a manner generalising that of section 2.3. In particular, this proof specialises
precisely to our previous arguments in the case I = J = 1.
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4.3. A Yoneda excursus

At this point we turn to attend to an unfortunate restriction of theory. So far we
have assumed that all categories involved are locally cartesian-closed categories. This
prohibits a naı̈ve application of our theory to, among other categories, Cat. There are
two immediate remedies to this, and we mention one while exploring the other.

While Cat is not locally cartesian-closed, it is ‘mostly so’. There exist characteri-
sations of those functors for which pullback does have a right adjoint – the Conduché
functors6 –, and this class is evidently closed under composition and pullback. With
this knowledge we might instead redo our theory in general by requiring that the
maps whose right adjoint to pullback we need belong to a class axiomatised in this
manner. This approach is that of the so termed ‘exponentiable’ maps, and provides a
weakening on the part of our assumptions.

Exponentiable maps, the somewhat obvious response to ‘what do we really need?’,
certainly suffice to give a stronger theory – see “Polynomials in categories with pull-
backs” by M. Weber for such an account. However, among the many canonical tools of
the working category theorist in dealing with generalisations we find the indispens-
able utility of working representably in a suitable ‘virtualisation’ of our structure.

Instead of directly working with objects and requirements imposed thereupon, we
may embed them in a broader context in which those requirements are always satisfied
but are not necessarily closed under representability in such a way so as to guarantee
that whenever a construction culminates in an object that is representable, the result is
canonically the representation of the analogous construction in the first context. This
verbiage is equivalently the following construction and lemma.

Prob. 4.8. Let y : C→ Ĉ be the Yoneda embedding, construct for each c ∈C an equivalence
of categories P C : Ĉ/yC→ Ĉ/C such that the following diagram commutes.

Ĉ/C Ĉ/C

C/C

yC/yC
yC/C

P C

Constr. 4.9. We begin by defining P C on objects. Let α : F⇒ yC be an object of Ĉ/yC,
f : D→ C and g : E→ C be objects of C/C, and h : f → g be a morphism of C/C.

Define P C(α)(f ) :≡ αD
↼{f } ⊆ FD and P C(α)(h) :≡ Fh↾αE

↼{g} as the restriction of Fh,
which is well-typed by the naturality of α. It is immediate that P C(α) is a functor
(C/C)op→ Set.

Now let β : G⇒ yC be an object and θ : α⇒ β be a morphism of Ĉ/yC, and define
P C(θ)f :≡ (θD)↾αD

↼{f } : P C(α)(f )→ P C(β)(f ) – this is well-typed by virtue of the equa-
tion βθ = α. Moreover, by the definition of P C(α) on morphisms as the restriction of F,
mutatis mutandis for β, and the assumed naturality of θ we see that these components
assemble into a natural transformation P C(θ) : P C(α)⇒ P C(β). Finally functoriality of
P C is clear from the definition.
6Although this notion appears to have been originally developed by Giraud
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Next we prove that the diagram above commutes. Let us expand on objects g : E→
C of C/C as (P C ◦ (yC/yC))(g) ≡ P C(yCg). To give the equality of this functor to yC/C(g)
we must further expand on objects and morphisms of (C/C)op.

On objects f : D→ C we have P C(yCg)(f ) ≡ ((yCg)D)↼{f } ≡ {h ∈ C(D,E) | gh = f } ≡
(C/C)(f ,g) ≡ yC/C(g)(f ) and on morphisms the equality is straightforward.

Thus (P C ◦ (yC/yC)) agree on objects and a similar computation shows they agree
on morphisms, so the diagram commutes.

By leveraging the idea that functions of sets are entirely determined by their values
on points and elaborating definitions we may check that P C as defined above is fully
faithful. We will conclude the construction by constructively demonstrating that it is
essentially surjective7.

To this end, fix a functor K : (C/C)op → Set. We will construct from this K the
complete data of a natural transformation α : F ⇒ yC such that P C(α) = K . We begin
with the functor F.

Let F : (C)op → Set be defined on objects as F(D) :≡
∐

f ∈C(D,C)K(f ) and on mor-
phisms h : D → E of C via the diagram below. It is straightforward to check that
this defines a functor, and from this we define αD(f ,k) :≡ f . Naturality follows easily,
and we see that by definition P C(α)(f : D → C) :≡ αD

↼{f } = K(f ) and P C(α)(h) = Kh,
thereby concluding the construction.

∐
g ′∈C(E,C)K(g ′)

∐
f ′∈C(D,E)K(f ′)

K(g) K(gh)

Fh

ιg

K(h)

ιgh

■

In this sense the Yoneda embedding commutes with the formation of slice cate-
gories. While undoubtedly there are more sophisticated ways of saying this, for our
purposes this direct construction is sufficient. More still is true of the Yoneda embed-
ding, but we leave the precise formulation and proof to the reader and supply only
the below sketch.
7In this way the inverse functor may be constructed and we avoid any choice principles.
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Lem. 4.10. (Sketch) Let C be a category and f : A→ B a morphism of C. Then the leftmost
diagram commutes, where P B is the equivalence of construction 4.9. Moreover, whenever
the functors f ∗ or Πf exist, there exist isomorphisms filling in the respective diagrams below
such that these isomorphisms paste with the functoriality isomorphisms of (−)∗ and Π(−)
coherently.

C/A

Ĉ/yCA C/B

Ĉ/yCB Ĉ/B

yC/yA Σf

ΣyCf yC/B

P B

C/B

Ĉ/yCB C/A

Ĉ/yCA Ĉ/A

yC/yB f ∗

(yCf )∗ yC/A

P A

C/A

Ĉ/yCA C/B

Ĉ/yCB Ĉ/B

yC/yA Πf

ΠyCf yC/B

P B

Thus we may instead transfer all of theory of polynomials from C to Ĉ with the
knowledge that whenever the underlying construction in C may be performed, it rep-
resents the same construction but executed representably in Ĉ, and thereby require
nothing of C at all while still retaining the influence of its structure on our results.

5. This is the last section

The reader who has either understood the content to this point, or determined that it is
in sore need of improvement, is now – it is hoped – fully equipped to read first-hand
the theory of polynomials as developed by Gambino-Kock. From here any further
explanations would come to little more than a restating of parts of the paper, indeed
even the examples and theorem 4.7 are but lifted from the document.

Gambino-Kock go on to develop notions of morphism of polynomial, prove char-
acterisation theorems on such, collect the totality of polynomials in a category into a
variety of structures, and explore the intersection of monads and polynomial functors.

These notes arose as an attempt to write down the introductory portion of a talk on
polynomials8 so that others might enjoy a shallower road to understanding the theory.
It is the author’s hope that the reader who has read this far will continue reading into
polynomials and develop and apply them further still.

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

8whose latter portion was not given in full because the author is terrible at making appropriate
length talks and Emily if you’re reading this i promise i’m trying, and to Daniel, David, Martina,
Naruki, and Tomas i’m sorry.
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